Unsupervised Audio Speech Segmentation Using the Voting Experts Algorithm

نویسندگان

  • Matthew Miller
  • Alexander Stoytchev
چکیده

Human beings have an apparently innate ability to segment continuous audio speech into words, and that ability is present in infants as young as 8 months old. This propensity towards audio segmentation seems to lay the groundwork for language learning in human beings. To artificially reproduce this ability would be both practically useful and theoretically enlightening. In this paper we propose an algorithm for the unsupervised segmentation of audio speech, based on the Voting Experts (VE) algorithm, which was originally designed to segment sequences of discrete tokens into categorical episodes. We demonstrate that our procedure is capable of inducing breaks with an accuracy substantially greater than chance, and suggest possible avenues of exploration to further increase the segmentation quality. We also show that this algorithm can reproduce results obtained from segmentation experiments performed with 8-month-old infants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Unsupervised Model of Infant Acoustic Speech Segmentation

There is a long standing hypothesis in Developmental Psychology that children use statistical information to segment acoustic speech streams into words. Additionally, several experiments have demonstrated that infants are able to find word breaks using distributional cues. In this paper we propose an algorithm for the unsupervised segmentation of audio speech, based on the Voting Experts (VE) a...

متن کامل

Unsupervised Segmentation of Audio Speech Using the Voting Experts Algorithm

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii CHAPTER

متن کامل

Bootstrap Voting Experts

BOOTSTRAP VOTING EXPERTS (BVE) is an extension to the VOTING EXPERTS algorithm for unsupervised chunking of sequences. BVE generates a series of segmentations, each of which incorporates knowledge gained from the previous segmentation. We show that this method of bootstrapping improves the performance of VOTING EXPERTS in a variety of unsupervised word segmentation scenarios, and generally impr...

متن کامل

Layered Mereotopology

BOOTSTRAP VOTING EXPERTS (BVE) is an extension to the VOTING EXPERTS algorithm for unsupervised chunking of sequences. BVE generates a series of segmentations, each of which incorporates knowledge gained from the previous segmentation. We show that this method of bootstrapping improves the performance of VOTING EXPERTS in a variety of unsupervised word segmentation scenarios, and generally impr...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008